

Compact PI Controller

The direct-acting motor control valve Type 3280 serves as a regulating element in various control loops. A linear stepper motor as actuator drives the valve, which comes in a compact and robust housing. Analogue setpoint signals are processed by the integrated control electronics. Due to an elastomeric seat seal the valve closes tight up to the DN specific nominal pressure (see ordering chart on p. 5). In case of power failure, the actual valve position will be kept. The motor's power consumption to hold a specific opening position of the valve is nearly zero. The motor needs power only during set point changes. This key feature can reduce the energy consumption of a plant dramatically and thus make it more efficient. This valve is particularly suited for demanding control tasks (high control range, accurate repeatability etc.).

Circuit function

2-way valve for continuous control, motor driven, remains in position without further electrical power

2/2-Way Proportional Valv	е
(motor-driven)	

 Seat valve with stepper motor - actuator isolated from flow path

FLUID CONTROL SYSTEMS

- Excellent range (1:100)
- Low power consumption
- Fast response
- Orifice sizes 2 to 6 mm
- Port connection 1/4" and 3/8"

Technical data						
Materials						
Body	Brass or stainless steel					
Housing	PC (Polycarbonate), PPS (Polyphenylene sulfide)					
Seals	FKM or NBR, others on request					
Medium	Neutral gases, liquids					
Pressure Range ¹⁾	0 to 6 bar					
Closure time	2.5 s (0 to 100% stroke)					
Fluid temperature	0 to +70 °C					
Ambient temperature	-10 to +60 °C					
Viscosity	Max. 600 mm ² /s (cSt)					
Power supply	24 V DC ± 10% (max. residual ripple 10%)					
Power consumption	Max. 8 W (depending on motor control),					
	<1 W in holding position					
Duty cycle	Up to 100 % (depending on fluid and ambient					
	temperature)					
Port connection	G 1/4, G 3/8, NPT 1/4, NPT 3/8					
Electrical connection	M12 connector, 8-pin, male					
Input signal	4-20mA or 0-10 V					
Input impedance	60 Ω (with current input)					
	22 k Ω (with voltage input)					
Output signal	Load capacity: 1030V, max 100mA, PNP					
	(Output signal active, if valve is closed)					
Typical control data ²⁾						
Hysteresis	< 5%					
Repeatability	<1 % FS					
Sensitivity	<1 % FS					
Span	1:100					
Protection class - valve	IP 50					
Installation	As required, preferably with actuator upright					
Status of LED	White: Normal operation and powered,					
	Yellow: Valve opened,					
	Green: Valve closed,					
	Red: Failure					
Dimensions	See drawings on page 4					
Weight	~0.7 kg					

2) Characteristic data of control behaviour depends on process conditions

p. 1/6

[m³/h] ³⁾

 $[m_N^3/h]^{4)}$

[bar] 5)

Advice for valve sizing

In continuous flow applications, the choice of an appropriate valve size is much more important than with on/off valves. The optimum size should be selected such that the resulting flow in the system is not unnecessarily reduced by the valve. However, a sufficient part of the pressure drop should be taken across the valve even when it is fully opened.

Recommended value: Pressure drop of valve > 25 % of total pressure drop within the system

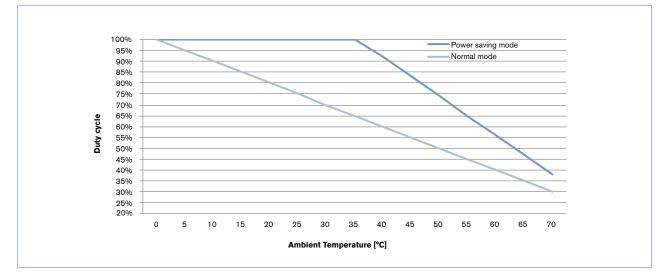
Otherwise, the ideal, linear valve curve characteristic is changed. If the differential pressure (difference between inlet and outlet pressure) exceeds half the value of the nominal pressure, the characteristics may change.

For that reason take advantage of Bürkert competent engineering services during the planning phase!

Determination of the k_v value

Pressure drop	k _v value for liquids [m³/h]	k _v value for gases [m³/h]		
Subcritical $p_2 > \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_{\rm N}}{514} \ \sqrt{\frac{T_1 \ \rho_{\rm N}}{p_2 \ \Delta p}}$		
Supercritical $p_2 < \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_N}{257p_1}\sqrt{T_1\rho_N}$		

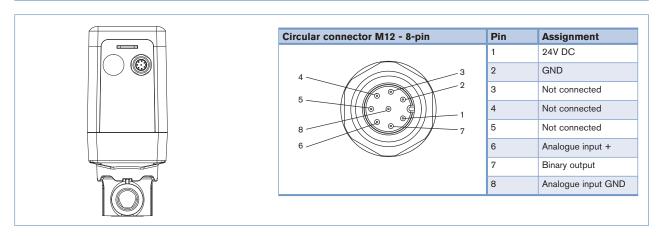
k_v Flow coefficient Standard flow rate Q_N Inlet pressure p_1

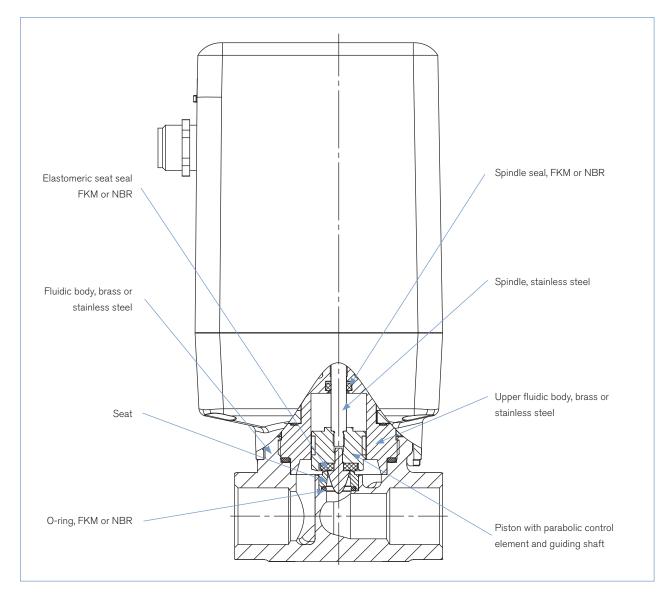

- [bar] ⁵⁾ Outlet pressure p_2
- Differential pressure p1-p2 Δp [bar]
- Density ρ
- [kg/m³] Standard density [kg/m³] $\rho_{\rm M}$
- [(273+t)K] T_1 medium temperature
- ³⁾ Measured with water, $\Delta p = 1$ bar, differential pressure over the valve
-) Standard conditions at
- 1,013 bar and 0 °C (273K)
- 5) Absolute pressure

Once the k_v value needed for the application has been calculated, you can compare it with the k_{vs} values shown in the ordering chart. The k_{vs} must be higher than the k_v value of the application, but neither too high, nor too close - as a recommendation: 10% higher.

Duty Cycle Derating Curve

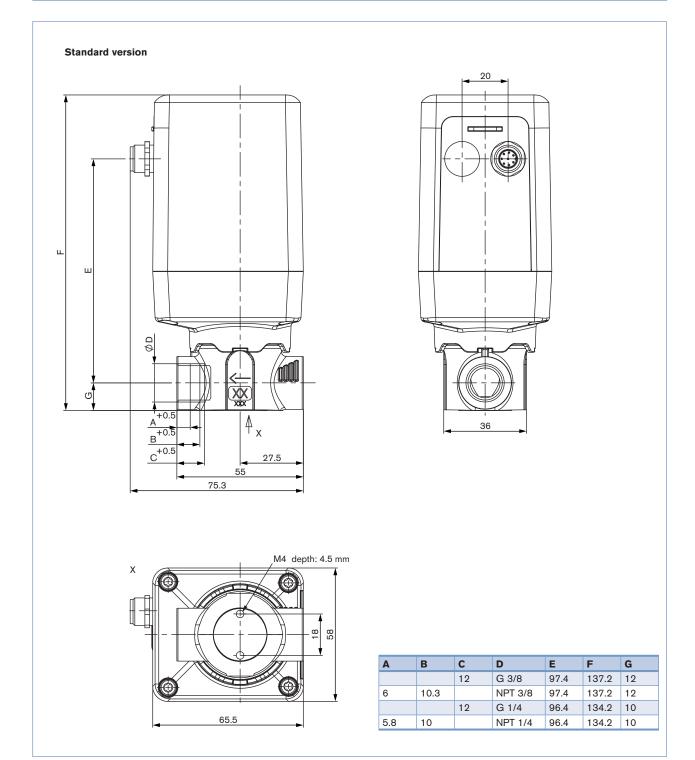
For motor valves it is essential to know the duty cycle during operation. Self-heating of the motor limits the maximum duty cycle. High ambient temperatures amplify the risk of damage due to overheating. The diagram below shows the suggested duty cycles dependent on the ambient temperature. Running the motor control valve in the power saving mode (lower actuator force) allows higher duty cycles. The motor is optimized for the valve function regarding dimensions, power consumption and costs.


Note: Operating the valve beyond the suggested duty cycles leads to a drastically reduced lifetime of the valve.


3280

burkert

Pin Assignment



Materials

p. 4/6

Dimensions [mm]

burkert

burkert

Ordering Chart

Valve function	Orifice [mm]	Port Connection	Seal material	k _{vs} value water [m³/h] [®]	Nominal pressure [barg] ⁷⁾	ltem no. brass	ltem no. stainless steel			
Control valve,	2	G 1/4	FKM	0.15	6	268 611	268 620			
without safety			NBR	0.15	6	268 616	268 624			
position in case		NPT 1/4	FKM	0.15	6	268 628	268 636			
of power failure			NBR	0.15	6	268 632	268 640			
	3	3	G 1/4	FKM	0.3	6	268 613	268 621		
								NBR	0.3	6
		NPT 1/4	FKM	0.3	6	268 629	268 637			
			NBR	0.3	6	268 633	268 641			
	4	G 3/8	FKM	0.5	6	268 614	268 622			
			NBR	0.5	6	268 618	268 626			
		NPT 3/8	FKM	0.5	6	268 630	268 638			
			NBR	0.5	6	268 634	268 642			
	6	G 3/8	FKM	0.9	6	268 615	268 623			
			NBR	0.9	6	268 619	268 627			
		NPT 3/8	FKM	0.9	6	268 631	268 639			
			NBR	0.9	6	268 635	268 643			

 $^{6)}\mbox{Measured}$ with water (20°C) and 1 bar pressure drop over valve $^{7)}\mbox{Fuel}$ gases may differ

Ordering Chart for Accessories

Article	Item No.	
M12 connector with 2m cable, 8 pins	919 061	
M12 connector with 2m cable, 8 pins (shielded cable)	918 991	

burkert

Design data for proportional valves

Please fill out this form and send to your local Bürkert	e fill out this form and send to your local Bürkert Sales Centre* with your inquiry or order	
Company	Contact person	in the PDF inter- before printing out the form.
Customer no.	Dept.	
Address	Tel./Fax	
Town / Postcode	E-Mail	

= Mandatory fields			Quantity		Reque: date	sted deliver
Process data						
Fluid						
State of fluid		liquid		gaseous	vaporous	
Fluid temperature			°C			
Maximum flow rate	Q _{nom} =		Unit:			
Minimum flow rate	Q _{min} =		Unit:			
Inlet pressure at nominal operation	p1=		barg			
Outlet pressure at nominal operation	p ₂ =		barg			
Maximum inlet pressure	p _{1max} =		barg			
Ambient temperature			°C			
Additional specifications						
Body material		Brass	Stair	less steel		
Seal material		FKM	NBR		other	

Note Please state all pressure values as overpressures with respect to atmospheric [barg].

To find your nearest Bürkert facility, click on the orange box $\;\;
ightarrow$

www.burkert.com

In case of special application conditions, please consult for advice.

Subject to alteration. © Christian Bürkert GmbH & Co. KG

1503/1_EU-en_00895277